您当前的位置:检测资讯 > 科研开发

开关电源EMC和滤波器电磁兼容整改问题对策

嘉峪检测网        2021-12-07 15:46

在现当今一切的电子产品当中,都离不开电源。但是,由于开关电源效率高、体积小的压倒性优势,在这一切的产品的电源有近百分之90以上都是采用开关电源停止电压适配,当然另外也有一些LDO。这样的话效率、体积或者是功用是到达了开发者的请求,但是在过认证(EN55022、FCC part 15、GB9254)的时候就会发现EMC会带来很多的困扰,例如,空间辐射测试不过,传导辐射测试不过、雷击浪涌、脉冲群……常常会由于这些问题的存在招致认证过程的延误,致产品延缓上市却不能抢占市场。鉴于此,特搜集整理了一些关于开关电源EMI整改问题对策,供各位参考学习。如有任何问题或者疑问,大家都能够来信一同讨论。

 

开关电源电磁干扰的产生机理及其传播途径

 

功率开关器件的高额开关动作是导致开关电源产生电磁干扰(EMI)的主要原因。开关频率的提高一方面减小了电源的体积和重量,另一方面也导

致了更为严重的EMI问题。开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。现在按噪声干扰源来分别说明:

 

1、二极管的反向恢复时间引起的干扰

 

交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。由电流波形可知,电流中含有高次谐波。大量电流谐波分量流入电网,造成对电网的谐波污染。另外,由于电流是脉冲波,使电源输入功率因数降低。高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

 

2、开关管工作时产生的谐波干扰

 

功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

 

3、交流输人回路产生的干扰

 

无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。

 

4、其他原因

 

元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。这增加了PCB分布参数的提取和近场干扰估计的难度。

 

Flyback架构noise在频谱上的反应:

 

0.15MHz处产生的振荡是开关频率的3次谐波引起的干扰;0.2MHz处产生的振荡是开关频率的4次谐波和Mosfet振荡2(190.5KHz)基波的迭加,引起的干扰;所以这部分较强;0.25MHz处产生的振荡是开关频率的5次谐波引起的干扰;0.35MHz处产生的振荡是开关频率的7次谐波引起的干扰;0.39MHz处产生的振荡是开关频率的8次谐波和Mosfet振荡2(190.5KHz)基波的迭加引起的干扰;1.31MHz处产生的振荡是Diode振荡1(1.31MHz)的基波引起的干扰;3.3MHz处产生的振荡是Mosfet振荡1(3.3MHz)的基波引起的干扰;开关管、整流二极管的振荡会产生较强的干扰

 

设计开关电源时防止EMI的措施:

 

1.把噪音电路节点的PCB铜箔面积最大限度地减小,如开关管的漏极、集电极、初次级绕组的节点等;

 

2.使输入和输出端远离噪音元件,如变压器线包、变压器磁芯、开关管的散热片等等;

 

3.使噪音元件(如未遮蔽的变压器线包、未遮蔽的变压器磁芯和开关管等等)远离外壳边缘,因为在正常操作下外壳边缘很可能靠近外面的接地线;

 

4.如果变压器没有使用电场屏蔽,要保持屏蔽体和散热片远离变压器;

 

5.尽量减小以下电流环的面积:次级(输出)整流器、初级开关功率器件、栅极(基极)驱动线路、辅助整流器

 

6.不要将门极(基极)的驱动返馈环路和初级开关电路或辅助整流电路混在一起;

 

7.调整优化阻尼电阻值,使它在开关的死区时间里不产生振铃响声;

 

8.防止EMI滤波电感饱和;

 

9.使拐弯节点和次级电路的元件远离初级电路的屏蔽体或者开关管的散热片;

 

10.保持初级电路的摆动的节点和元件本体远离屏蔽或者散热片;

 

11.使高频输入的EMI滤波器靠近输入电缆或者连接器端;

 

12.保持高频输出的EMI滤波器靠近输出电线端子;

 

13.使EMI滤波器对面的PCB板的铜箔和元件本体之间保持一定距离;

 

14.在辅助线圈的整流器的线路上放一些电阻;

 

15.在磁棒线圈上并联阻尼电阻;

 

16.在输出RF滤波器两端并联阻尼电阻;

 

17.在PCB设计时允许放1nF/500V陶瓷电容器或者还可以是一串电阻,跨接在变压器的初级的静端和辅助绕组之间;

 

18.保持EMI滤波器远离功率变压器,尤其是避免定位在绕包的端部;

 

19.在PCB面积足够的情况下,可在PCB上留下放屏蔽绕组用的脚位和放RC阻尼器的位置,RC阻尼器可跨接在屏蔽绕组两端;

 

20.空间允许的话在开关功率场效应管的漏极和门极之间放一个小径向引线电容器(米勒电容,10皮法/1千伏电容);

 

21.空间允许的话放一个小的RC阻尼器在直流输出端;

 

22.不要把AC插座与初级开关管的散热片靠在一起。

 

开关电源EMI的特点:

 

作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。

 

1MHZ以内----以差模干扰为主,增大X电容就可解决;

 

1MHZ---5MHZ---差模共模混合,采用输入端并一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并解决;

 

5M以上---以共摸干扰为主,采用抑制共摸的方法。对于外壳接地的,在地线上用一个磁环绕2圈会对10MHZ以上干扰有较大的衰减(diudiu2006);

 

对于25--30MHZ不过可以采用加大对地Y电容、在变压器外面包铜皮、改变PCBLAYOUT、输出线前面接一个双线并绕的小磁环,最少绕10圈、在输出整流管两端并RC滤波器;

 

30---50MHZ---普遍是MOS管高速开通关断引起,可以用增大MOS驱动电阻,RCD缓冲电路采用1N4007慢管,VCC供电电压用1N4007慢管来解决;

 

100---200MHZ---普遍是输出整流管反向恢复电流引起,可以在整流管上串磁珠;100MHz-200MHz之间大部分出于PFCMOSFET及PFC二极管,现在MOSFET及PFC二极管串磁珠有效果,水平方向基本可以解决问题,但垂直方向就很无奈了。开关电源的辐射一般只会影响到100M以下的频段,也可以在MOS、二极管上加相应吸收回路,但效率会有所降低。

 

1MHZ以内----以差模干扰为主

 

1.增大X电容量;2.添加差模电感;3.小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。

 

1MHZ---5MHZ---差模共模混合

 

采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决。1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3.也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。

 

5M以上---以共摸干扰为主,采用抑制共摸的方法

 

对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;也可选择紧贴变压器的铁芯粘铜箔,铜箔闭环。处理后端输出整流管的吸收电路和初级大电路并联电容的大小。

 

对于20--30MHZ

 

1.对于一类产品可以采用调整对地Y2电容量或改变Y2电容位置;2.调整一二次侧间的Y1电容位置及参数值;3.在变压器外面包铜箔、变压器最里层加屏蔽层,调整变压器的各绕组的排布;4.改变PCBLAYOUT;5.输出线前面接一个双线并绕的小共模电感;6.在输出整流管两端并联RC滤波器且调整合理的参数;7.在变压器与MOSFET之间加BEADCORE;8.在变压器的输入电压脚加一个小电容;9.可以用增大MOS驱动电阻。

 

30---50MHZ普遍是MOS管高速开通关断引起

 

1.可以用增大MOS驱动电阻;

 

2.RCD缓冲电路采用1N4007慢管;

 

3.VCC供电电压用1N4007慢管来解决;

 

4.或者输出线前端串接一个双线并绕的小共模电感;

 

5.在MOSFET的D-S脚并联一个小吸收电路;

 

6.在变压器与MOSFET之间加BEADCORE;

 

7.在变压器的输入电压脚加一个小电容;

 

8.PCB心LAYOUT时大电解电容,变压器,MOS构成的电路环尽可能的小;

 

9.变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。

 

50---100MHZ普遍是输出整流管反向恢复电流引起

 

1.可以在整流管上串磁珠;

 

2.调整输出整流管的吸收电路参数;

 

3.可改变一二次侧跨接Y电容支路的阻抗,如PIN脚处加BEADCORE或串接适当的电阻;

 

4.也可改变MOSFET,输出整流二极管的本体向空间的辐射(如铁夹卡MOSFET,铁夹卡DIODE,改变散热器的接地点);

 

5.增加屏蔽铜箔抑制向空间辐射。

 

200MHZ以上开关电源已基本辐射量很小,一般可过EMI标准。

 

传导方面EMI对策:

 

传导冷机时在0.15-1MHZ超标,热机时就有7DB余量。主要原因是初级BULK电容DF值过大造成的,冷机时ESR比较大,热机时ESR比较小,开关电流在ESR上形成开关电压,它会压在一个电流LN线间流动,这就是差模干扰。解决办法是用ESR低的电解电容或者在两个电解电容之间加一个差模电感.........

 

EMC硬件设计规范与滤波器使用注意事项

 

硬件EMC规范讲解:

 

电磁干扰的三要素是干扰源、干扰传输途径、干扰接收器。EMC就围绕这些问题进行研究。最基本的干扰抑制技术是屏蔽、滤波、接地。它们主要用来切断干扰的传输途径。广义的电磁兼容控制技术包括抑制干扰源的发射和提高干扰接收器的敏感度,但已延伸到其他学科领域。

 

本规范重点在单板的EMC设计上,附带一些必须的EMC知识及法则。在印制电路板设计阶段对电磁兼容考虑将减少电路在样机中发生电磁干扰。问题的种类包括公共阻抗耦合、串扰、高频载流导线产生的辐射和通过由互连布线和印制线形成的回路拾取噪声等。

 

在高速逻辑电路里,这类问题特别脆弱,原因很多:

 

1、电源与地线的阻抗随频率增加而增加,公共阻抗耦合的发生比较频繁;

 

2、信号频率较高,通过寄生电容耦合到步线较有效,串扰发生更容易;

 

3、信号回路尺寸与时钟频率及其谐波的波长相比拟,辐射更加显著。

 

4、引起信号线路反射的阻抗不匹配问题。

 

一、高频开关电源的电路结构

 

高频开关电源的主拓扑电路原理,如图1所示。

 

开关电源EMC和滤波器电磁兼容整改问题对策

 

二、高频开关电源电磁骚扰源的分析

 

在图1a电路中的整流器、功率管Q1,在图1b电路中的功率管Q2~Q5、高频变压器T1、输出整流二极管D1~D2都是高频开关电源工作时产生电磁骚扰的主要骚扰源,具体分析如下。

 

(1)整流器整流过程产生的高次谐波会沿着电源线产生传导骚扰和辐射骚扰。

 

(2)开关功率管工作在高频导通和截止的状态,为了降低开关损耗,提高电源功率密度和整体效率,开关管的打开和关断的速度越来越快,一般在几微秒,开关管以这样的速度打开和关断,形成了浪涌电压和浪涌电流,会产生高频高压的尖峰谐波,对空间和交流输入线形成电磁骚扰。

 

(3)高频变压器T1进行功率变换的同时,产生了交变的电磁场,向空间辐射电磁波,形成了辐射骚扰。变压器的分布电感和电容产生振荡,并通过变压器初次级之间的分布电容耦合到交流输入回路,形成传导骚扰。

 

(4)在输出电压比较低的情况下,输出整流二极管工作在高频开关状态,也是一种电磁骚扰源。

 

由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压和电流变化率下,二极管反向恢复的时间越长,则尖峰电流的影响也越大,骚扰信号就越强,由此产生高频衰减振荡,这是一种差模传导骚扰。

 

所有产生的这些电磁信号,通过电源线、信号线、接地线等金属导线传输到外部电源形成传导骚扰。通过导线和器件辐射或通过充当天线的互连线辐射的骚扰信号造成辐射骚扰。

 

三、针对高频开关电源电磁骚扰的电磁兼容设计

 

(1)开关电源入口加电源滤波器,抑制开关电源所产生的高次谐波。

 

(2)输入输出电源线上加铁氧体磁环,一方面抑制电源线内的高频共模,另一方面减小通过电源线辐射的骚扰能量。

 

(3)电源线尽可能靠近地线,以减小差模辐射的环路面积;把输入交流电源线和输出直流电源线分开走线,减小输入输出间的电磁耦合;信号线远离电源线,靠近地线走线,并且走线不要过长,以减小回路的环面积;PCB板上的线条宽度不能突变,拐角采用圆弧过渡,尽量不采用直角或尖角。

 

(4)对芯片和MOS开关管安装去耦电容,其位置尽可能地靠近并联在器件的电源和接地管脚。

 

(5)由于接地导线存在Ldi/dt,PCB板和机壳间接地采用铜柱连接,对不适合用铜柱连接的采用较粗的导线,并就近接地。

 

(6)在开关管以及输出整流二极管两端加RC吸收电路,吸收浪涌电压。

 

四、高频开关电源电磁骚扰测试曲线

 

在3m法电波暗室对试验样机进行测试,其L、N线的传导骚扰检测曲线如图2、3所示,辐射骚扰的垂直极化扫描曲线如图4、5所示。

 

根据铁路客运专线标准规定,传导骚扰限值和辐射骚扰限值如表1、2所示。

 

开关电源EMC和滤波器电磁兼容整改问题对策

 

本开关电源 通过了传导骚扰的测试,测试波形如图2、3所示。辐射骚扰高频段230~1000MHz也测试合格,如图5所示。只是在30~200MHz频段范围内的垂直极化指标超标, 超标20dB,如图4所示。

 

由测试结果可以看出,通过电磁兼容设计在传导骚扰抑制方面取得了良好效果,在高频段辐射骚扰的设计也达到了预期效果,下面还需对在30~200MHz频段范围内的辐射骚扰进行改进设计。

 

由图4可以看出,本开关电源存在辐射骚扰超标的现象,为了抑制电磁骚扰而使用铁氧体元件,价格便宜,效果明显。

 

开关电源EMC和滤波器电磁兼容整改问题对策

 

铁氧体元件等效电路是电感L和电阻R组成的串联电路,L和R都是频率的函数。低频时,R很小,L起主要作用,电磁骚扰被反射而受到抑制;高频时,R增大,电磁骚扰被吸收并转换成热能,使高频骚扰大大衰减。不同的铁氧体抑制元件,有不同的 抑制频率范围。总之,选择和安装铁氧体元件可参照如下几条:

 

(1)铁氧体的体积越大,抑制效果越好;

 

(2)在体积一定时,长而细的形状比短而粗的抑制效果好;

 

(3)内径越小抑制效果也越好;

 

(4)横截面越大,越不易饱和;

 

(5)磁导率越高,抑制的频率就越低;

 

(6)铁氧体抑制元件应当安装在靠近骚扰源的地方;

 

(7)在输入、输出导线上安装时,应尽量靠近屏蔽壳的进、出口处。

 

根据上面对高频开关电源骚扰源和铁氧体元件的分析,决定在靠近骚扰源的地方套磁珠与磁环。

 

图1a中电容C1的接地端套铁氧体磁珠(φ3.5×φ1.3×3.5),图1b中整流二极管D1和D2使用肖特基二极管,其阳极套铁氧体磁珠(φ3.5×φ1.3×3.5),直流输出线缆用铁氧体磁环(φ13.5×φ7.5×7)绕两圈且靠近出口处。经过处理后重新测试,其扫描曲线如图6所示。

 

由此可见,大部分频段的辐射骚扰已被抑制到标准要求以下,但在频率81、138、165kHz附近处仍然超标。

 

开关电源EMC和滤波器电磁兼容整改问题对策

 

根据对开关电源电磁骚扰源的分析可知,在图1b电路中高频变压器T1也是一个骚扰源。为了阻止高频变压器产生的骚扰信号以辐射方式发射,把变压器的外壳用屏蔽材料铜箔环绕一圈构成一回路加以屏蔽,以切断变压器通过空间耦合形成的辐射骚扰传播途径。

 

并且为了减少因变压器侧开通时电流瞬间突变产生的di/dt骚扰,在变压器T1的 侧串进1个电感,以减小器件的开通损耗,降低辐射骚扰信号。经过整改后,辐射骚扰大大下降,再次对本电源辐射骚扰进行测试,完全达到了标准要求,其测试结果如图7所示。

 

开关电源EMC和滤波器电磁兼容整改问题对策

 

五、结语

 

随着时代的发展,越来越多的电子、电气设备或系统产品都需要进行检验检测,其中EMC测试是必备的检验检测指标之一。但EMC测试项目费用较贵,EMC实验室造价昂贵,绝大部分测量设备又需要采用进口设备,导致很少检验检测机构有能力建造EMC实验室。产品的EMC性能是设计阶段赋予的,一般电子产品设计时如果不考虑EMC因素,就会很容易导致EMC测试失败,以致不能通过相关EMC法规的测试或认证。例如,产品设计研发工程师们根据需求,设计出效果良好的滤波电路,置入产品I/O(输入/输出)接口的前级,可使因传导而进入系统的干扰噪声消除在电路系统的入口处;设计出隔离电路(如变压器隔离和光电隔离等)解决通过电源线、信号线和地线进入电路的传导干扰,同时阻止因公共阻抗、长线传输而引起的干扰;设计出能量吸收回路,从而减少电路、器件吸收的噪声能量;通过选择元器件和合理安排的电路系统,使干扰的影响减少。

 
分享到:

来源:电磁兼容之家