您当前的位置:检测预警 > 栏目首页

  • 锂电池自放电影响因素及测量方法

    前言:本文讲述正极材料、负极材料、电解液和存储环境等对锂离子电池自放电率的影响。同时介绍了目前常用的传统锂电池自放电率的测量方法和新型自放电率快速测量方法。

    2019/07/30 更新 分类:科研开发 分享

  • 锂电池老化制度对电池性能的影响

    锂电池的生产工艺可以分为前道极片制造、中道电芯封装、后道电池活化三个阶段,电池活化阶段的目的是让电池中的活物质和电解液经过充分活化以达到电化学性能稳定。活化阶段包括预充电、化成、老化、定容等阶段。

    2020/07/07 更新 分类:科研开发 分享

  • 锂电池化成工艺研究分析总结

    锂离子电池化成过程中,负极石墨表面SEI膜在生成的初期,靠近石墨表面的主要是无机锂盐{Li2O、LiX(X=F、Cl等)},该层结构相对致密,且对电解液及高温性能更为稳定,而SEI膜外层生成的主要是有机锂盐(ROCO2Li、ROLi等),结构疏松,性能不够稳定。

    2020/08/27 更新 分类:科研开发 分享

  • 制备块体材料TEM样品的离子减薄技术

    电解双喷减薄法和离子减薄法是制作块体材料TEM样品的传统减薄技术。相比双喷减薄法(电化学腐蚀)对电解液的要求,离子减薄法对样品更具有普适性,不仅可以减薄金属,也可以对陶瓷、多种复合材料进行最终减薄。本文将着重探讨离子减薄技术在进行不同种类样品减薄时可能存在的问题以及应对方法。

    2021/01/21 更新 分类:科研开发 分享

  • 保持路径清洁可使固态锂电池的容量翻倍

    日本东京工业大学(Tokyo Tech)、东北大学、国立先进工业科学技术研究院(AIST)和日本工业大学的科学家们通过实验证明,清洁的电解液/电极界面是实现高容量固态锂电池的关键。他们的发现为改进电池设计铺平了道路,提升了移动设备和电动汽车的容量、稳定性和安全性。

    2021/04/29 更新 分类:科研开发 分享

  • 不同老化路径对锂离子电池热失控行为的影响

    作者研究了不同老化路径对锂离子电池热失控行为的影响,发现老化过程中正极发生的副反应对电池热失控特性演变无明显影响,电池全生命周期热失控特性演变主要取决于负极材料+电解液反应体系产热特性的变化。

    2021/06/29 更新 分类:科研开发 分享

  • 软包锂离子电池鼓胀原因超全总结

    引起软包锂离子电池鼓胀的原因有很多。根据实验研发经验,笔者将锂电池鼓胀的原因分为三类,一是电池极片在循环过程中膨胀导致的厚度增加;二是由于电解液氧化分解产气导致的鼓胀。三是电池封装不严引进水分、角位破损等工艺缺陷引起的鼓胀

    2022/11/28 更新 分类:法规标准 分享

  • 隔膜对动力电池加热、过充、针刺和外短路测试的影响

    一层薄薄的膜材料,主要作用是将正、负极分隔开来,防止两极接触而短路,此外还具有能使电解质离子通过的功能。电池的种类不同,采用的隔膜也不同。对于锂电池系列,由于电解液为有机溶剂体系,因而需要有耐有机溶剂的隔膜材料,目前常用的是高强度、薄膜化的聚烯烃多孔膜,如聚乙烯膜(polyethylene,PE)、聚丙烯膜(Polypropylene,PP)等。

    2020/09/27 更新 分类:科研开发 分享

  • 北科大Adv Mater:石墨烯插层二硫化钼用作高性能水系锌离子电池正极

    水系锌离子电池具有理论容量高、成本低廉、环境友好、组装简便等优势,是一种极具发展前景的大规模储能系统。然而二价锌离子与宿主材料之间的强静电作用、正极材料溶解、锌枝晶生长等问题限制了其广泛应用。目前,中性或弱酸性电解液已被证实可有效提高锌负极的循环稳定性,进一步开发与之匹配且能够高效、快速、稳定储锌的正极材料是推动水系锌离子电池发展的关

    2021/02/20 更新 分类:科研开发 分享

  • 从原理出发学习锂离子电池负极材料所面临的的挑战

    人们已通过各种方法对负极材料进行纳米化、特殊形貌控制以及材料复合等方面的改性研究,缩短了锂离子的脱嵌路径,增大了材料与电解液的有效接触面积,抑制了材料相互之间的团聚,增强了材料的导电性。这些新颖的改性思路有效提升了材料的电化学性能,但距离其真正商业化应用尚存在一定距离。

    2021/03/29 更新 分类:科研开发 分享